業績

査読付き論文

2024

  • Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability.
    B. J. J. Subong and T. Ozawa,
    Curr. Issues Mol. Biol., 46, 2598-2619 (2024). doi.org/10.3390/cimb46030165

2023

  • Split Luciferase-Fragment Reconstitution for Unveiling RNA Localization and Dynamics in Live Cells.
    M. Eguchi, H. Yoshimura, Y. Ueda and T. Ozawa,
    ACS Sensors, 8(11), 4055-4063 (2023). DOI: 10.1021/acssensors.3c01080
  • Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging.
    Y. Nasu, A. Aggarwal, G. Le, C. Vo, Y. Kambe, X. Wang, F. Beinlich, A. Lee, T. Ram, F. Wang, K. Gorzo, Y. Kamijo, M. Boisvert, S. Nishinami, G. Kawamura, T. Ozawa, H. Toda, G. Gordon, S. Ge, H. Hirase, M. Nedergaard, M.-E. Paquet, M. Drobizhev, K. Podgorski, and R. Campbell,
    Nature Communications, 14, 6598 (2023). DOI: 10.1038/s41467-023-42230-5
  • Protocol for screening cellular outputs activated by optogenetically-controlled temporal PI3K signaling activation patterns.
    Y. Ueda, S. Matsushita, M. Suzuki, T. Ozawa,
    STAR Protocols, 4, 102622 (2023). DOI: 10.1016/j.xpro.2023.102622.
  • Class 3 PI3K participates in nuclear gene transcription and co-activates the circadian clock to promote de novo purine synthesis. C. Alkhoury,
    N. Henneman, V. Petrenko, Y. Shibayama, A. Segaloni, A. Gadault, I. Nemazanyy, E.L. Guillou, A. D. Wolide, K. Antoniadou, X. Tong, T. Tamaru, T. Ozawa, M. Girard, K. Hnia, D. Lutter, C. Dibner and G. Panasyuk,
    Nature Cell Biology, 25, 975-988 (2023). DOI: 10.1038/s41556-023-01171-3.
  • Optogenetic decoding of Akt2-regulated cellular metabolic signaling pathways in skeletal muscle cells using transomics analysis.
    G. Kawamura, T. Kokaji, K. Kawata, Y. Sekine, Y. Suzuki, T. Soga, Y. Ueda, M. Endo, S. Kuroda and T. Ozawa,
    Science Signaling, 16, eabn0782 (2023). DOI: 10.1126/scisignal.abn0782
  • RNA Aptamer-Based Approach to Inhibiting Split-GFP Reconstruction and the Loss of Inhibitory Activity Using Complementary RNA.
    T. Kamura, Y. Katsuda, Y. Fuchigami, Y. Itsuki, Y.  Kitamura, T. Sakurai, T. Ozawa and T. Ihara,
    Bulletin of Chemistry Society Japan, 96, 241-246 (2023). DOI: 10.1246/bcsj.20220331
  • Akaike’s Information Criterion for Stoichiometry Inference of Supramolecular Complexes.
    K. Ikemoto, K. Takahashi, T. Ozawa, H. Isobe,
    Angewandte Chemie Int. Ed., 62, e202219059 (2023). DOI: org/10.1002/anie.202219059

2022

  • Imaging and manipulation of plasma membrane fatty acids clusters using TOF-SIMS combined optogenetics.
    C. Zhang, K. Kikushima, M. Endo, T. Kahyo, M. Horikawa, T. Matsudaira, T. Tanaka, Y. Takanashi, T. Sato, Y. Takahashi, L. Xu, N. Takayama, A. Islam, M. A. Mamun, T. Ozawa and M Setou,
    Cells, 12, 10 (2022). DOI: 10.3390/cells12010010.
  • Blue light alters cellular lipidome–Light-induced lipidomic changes can be modulated by optogenetically engineered cPLA2α.
    C. Zhang, L. Xu, M. Endo, T. Kahyo, K. Kikushima, M. Horikawa, M. Murakami, A.S.M. Waliullah, M. M. Hasan, T. Sakamoto, Y. Takahashi, S. Aramaki, T. Ozawa and M. Setou,
    Journal of Photochemistry Photobiology, 12, 100150 (2022). DOI: 10.1016/j.jpap.2022.100150
  • Mechanistic insights into cancer drug resistance through optogenetic PI3K signaling hyperactivation.
    Y. Ueda, Y. Miura, N. Tomishige, N. Sugimoto, M. Murase, G. Kawamura, N. Sasaki, T. Ishiwata, and T. Ozawa,
    Cell Chemical Biology 29, 1576-1587 (2022). DOI: 10.1016/j.chemBiology2022.10.002.
  • Systematic Interrogation of the Temperature Perturbation in the Insulin Signaling Pathway for Optogenetic Stimulation.
    Q. Dong, M. Endo, G. Kawamura and T. Ozawa,
    Cells, 11, 3136 (2022). DOI: 10.3390/cells11193136.
  • Increased spine PIP3 is sequestered from dendritic shafts.
    Y. Ueda, N. Sugimoto and T. Ozawa,
    Molecular Brain, 15, 59 (2022). DOI: 10.1186/s13041-022-00944-5.
  • N-Heterocyclic carbene-based C-centered Au(I)-Ag(I) clusters with intense phosphorescence and the ligand-specific, organelle-selective translocation in cells.
    Z. Lei, M. Endo, H. Ube, T. Shiraogawa, P. Zhao, K. Nagata, X.-L. Pei, T. Eguchi, T. Kamachi, M. Ehara*, T. Ozawa* and M. Shionoya*,
    Nature Communication, 13, 4288 (2022). DOI: 10.1038/s41467-022-31891-3
  • Discovery of a Phase-Separating Small Molecule That Selectively Sequesters Tubulin in Cells.
    G. Ado, N. Noda, H. T. Vu, A. Perron, A. D. Mahapatra, K. P. Arista, H. Yoshimura, D. M. Packwood, F. Ishidate, S. Sato, T. Ozawa and M. Uesugi,
    Chemical Science, 13, 5760-5766 (2022). DOI: 10.1039/d1sc07151c.
  • Sphingomyelin localization in the intestinal crypt surface.
    M. Ueda, M. Abe, T. Ishiwata and T. Ozawa,
    Biochemical and Biophysical Research Communications, 611, 14-18 (2022). DOI: 10.1016/j.bbrc.2022.03.128
  • Castanospermine suppresses CD44 ectodomain cleavage as revealed by transmembrane bioluminescent sensors.
    N. Noda and T. Ozawa,
    Journal of Cell Science, 135, jcs259314 (2022). DOI: 10.1242/jcs.259314
  • A Series of Furimazine Derivatives for Sustained Live-cell Bioluminescence Imaging and Application to the Monitoring of Myogenesis at Single-cell Level.
    M. Orioka, M. Eguchi, Y. Mizui, Y. Ikeda, A. Sakama, Q. Li, H. Yoshimura, T. Ozawa, D. Citterio, and Y. Hiruta,
    Bioconjugate Chemistry, 33, 496-504 (2022). DOI: 10.1021/acs.bioconjChemistry2c00035.
  • Poly(ADP-ribose) polymerase (PARP) is critically involved in liver ischemia/reperfusion-injury.
    S. Haga, A. Kanno, N. Morita, S. Jin, K. Matoba, T. Ozawa and M. Ozaki,
    Journal of Surgical Research, 270,124-138 (2022). DOI: 10.1016/j.jss.2021.09.008

2021

  • Long-term single cell bioluminescence imaging with C-3 position protected coelenterazine analogues.
    Y. Mizui, M. Eguchi, M. Tanaka, Y. Ikeda, H. Yoshimura, T. Ozawa, D. Citterio and Y. Hiruta,
    Organic & Biomolecular Chemistry, 19, 579-586 (2021). DOI: 10.1039/D0OB02020F
  • Optogenetic Control of Phosphatidylinositol (3,4,5)-Triphosphate Production by Light-Sensitive Cryptochrome Proteins on the Plasma Membrane.
    L. Yang, T. Ozawa, H. Dong, X. Zhang,
    Chinese Journal of Chemistry, 39, 1240–1246 (2021). DOI: 10.1002/cjoc.202000648

2020

  • Synergetic roles of Formyl Peptide Receptor 1 oligomerization in ligand-induced signal transduction.
    T. Nishiguchi, H. Yoshimura, R.S. Kasai, T.K. Fujiwara and T. Ozawa,
    ACS Chemistry Biology, 18, 2577-2587 (2020). DOI: 10.1021/acschembio.0c00631.
  • Fluorescent H2 Receptor Squaramide-Type Antagonists: Synthesis, Characterization, and Applications.
    S. Biselli, I. Alencastre, K. Tropmann, D. Erdmann, M. Chen, T. Littmann, A. F. Maia, M. Gomez-Lazaro, M. Tanaka, T. Ozawa, M. Keller, M. Lamghari, A. Buschauer, G. Bernhardt,
    ACS Medicinal Chemistry Letters, 11, 1521-1528 (2020). DOI: 10.1021/acsmedchemlett.0c00033.

2019

  • Parallelized shifted‐excitation Raman difference spectroscopy for fluorescence rejection in a temporary varying system.
    R. Shimada, T. Nakamura, T. Ozawa,
    Journal of Biophotonics. 12, e201960028 (2019). DOI:10.1002/jbio.201960028
  • Comprehensive modeling of bloodstain aging by multivariate Raman spectral resolution with kinetics.
    A. Takamura, D. Watanabe, R. Shimada, T. Ozawa,
    Communications Chemistry. 2, 115 (2019). DOI:10.1038/s42004-019-0217-1
  • Enhanced bioluminescent sensor for longitudinal detection of CREB activation in living cells.
    N. Noda, T. Ishimoto, H. Mori, T. Ozawa,
    Photochemical & Photobiological Sciences. 18, 2740–2747 (2019). DOI:10.1039/C9PP00249A.
  • Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light.
    M. Endo, T. Iwawaki, H. Yoshimura, T. Ozawa,
    ACS Chemical Biology. 14, 2206–2214 (2019). DOI:10.1021/acschembio.9b00460.
  • A. Buschauer, G. Bernhardt, [ 3 H]UR-DEBa176: A 2,4-Diaminopyrimidine-Type Radioligand Enabling Binding Studies at the Human, Mouse, and Rat Histamine H 4 Receptors.
    E. Bartole, T. Littmann, M. Tanaka, T. Ozawa,
    Journal of Medicinal Chemistry. 62, 8338–8356 (2019). DOI:10.1021/acs.jmedchem.9b01342
  • M. ENDO, M. MIYASAKI, Q. LI, G. KAWAMURA, T. OZAWA,
    A Detection Method for GLUT4 Exocytosis Based on Spontaneous Split Luciferase Complementation.
    Analytical Sciences. 35, 835–838 (2019). DOI:10.2116/analsci.19C003
  • Phenotype Profiling for Forensic Purposes: Determining Donor Sex Based on Fourier Transform Infrared Spectroscopy of Urine Traces.
    A. Takamura, L. Halamkova, T. Ozawa, I. K. Lednev,
    Analytical Chemistry. 91, 6288–6295 (2019). DOI:10.1021/acs.analchem.9b01058
  • Using redox-sensitive mitochondrial cytochrome Raman bands for label-free detection of mitochondrial dysfunction.
    T. Morimoto, L. Chiu, H. Kanda, H. Kawagoe, T. Ozawa, M. Nakamura, K. Nishida, K. Fujita, T. Fujikado,
    The Analyst. 144, 2531–2540 (2019). DOI:10.1039/C8AN02213E PubMed:30839952
  • Activation of caspase-3 during Chlamydia trachomatis -induced apoptosis at a late stage.
    J. Matsuo, S. Haga, K. Hashimoto, T. Okubo, T. Ozawa, M. Ozaki, H. Yamaguchi,
    Canadian Journal of Microbiology. 65, 135–143 (2019). DOI:10.1139/cjm-2018-0408

2018

  • Unique Roles of β-Arrestin in GPCR Trafficking Revealed by Photoinducible Dimerizers. 
    O. Takenouchi, H. Yoshimura, T. Ozawa,
    Scientific Reports8, 677 (2018). DOI:10.1038/s41598-017-19130-y
  • Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. 
    G. Kawamura, M. Hattori, K. Takamatsu, T. Tsukada, Y. Ninomiya, I. Benjamin, P. Sassone-Corsi, T. Ozawa, T. Tamaru,
    Communications Biology1, 204 (2018). DOI:10.1038/s42003-018-0209-1
  • Soft and Robust Identification of Body Fluid Using Fourier Transform Infrared Spectroscopy and Chemometric Strategies for Forensic Analysis. 
    A. Takamura, K. Watanabe, T. Akutsu, T. Ozawa,
    Scientific Reports8, 8459 (2018). DOI:10.1038/s41598-018-26873-9
  • Preferential Photoreaction in a Porous Crystal, Metal–Macrocycle Framework: Pd II -Mediated Olefin Migration over [2+2] Cycloaddition. 
    H. Yonezawa, S. Tashiro, T. Shiraogawa, M. Ehara, R. Shimada, T. Ozawa, M. Shionoya,
    Journal of the American Chemical Society140, 16610–16614 (2018). DOI:10.1021/jacs.8b08534
  • A split luciferase-based probe for quantitative proximal determination of Gαq signalling in live cells. 
    T. Littmann, T. Ozawa, C. Hoffmann, A. Buschauer, G. Bernhardt,
    Scientific Reports8, 17179 (2018). DOI:10.1038/s41598-018-35615-w
  • Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B. 
    N. Noda, T. Ozawa,
    Photochemistry and Photobiology94, 1071–1076 (2018). DOI:10.1111/php.12955
  • A robust split-luciferase-based cell fusion screening for discovering myogenesis-promoting molecules. 
    Q. Li, H. Yoshimura, M. Komiya, K. Tajiri, M. Uesugi, Y. Hata, T. Ozawa,
    The Analyst143, 3472–3480 (2018). DOI:10.1039/C8AN00285A
  • Establishing a Split Luciferase Assay for Proteinkinase G (PKG) Interaction Studies. 
    A. Schramm, P. Mueller-Thuemen, T. Littmann, M. Harloff, T. Ozawa, J. Schlossmann,
    International Journal of Molecular Sciences19, 1180 (2018). DOI:10.3390/ijms19041180
  • Detection of Necroptosis in Ligand-Mediated and Hypoxia-Induced Injury of Hepatocytes Using a Novel Optic Probe-Detecting Receptor-Interacting Protein (RIP)1/RIP3 Binding. 
    S. Haga, A. Kanno, T. Ozawa, N. Morita, M. Asano, M. Ozaki,
    Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics26, 503–513 (2018). DOI:10.3727/096504017X15005102445191
  • Photo-Activatable Akt Probe: A New Tool to Study the Akt-Dependent Physiopathology of Cancer Cells. 
    S. Haga, T. Ozawa, N. Morita, M. Asano, S. Jin, Yimin, M. Ozaki,
    Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics26, 467–472 (2018). DOI:10.3727/096504017X15040166233313

2017

  • Optogenetic interrogation reveals separable G-protein-dependent and -independent signalling linking G-protein-coupled receptors to the circadian oscillator.
    H. J. Bailes, N. Milosavljevic, L.-Y. Zhuang, E. J. Gerrard, T. Nishiguchi, T. Ozawa, R. J. Lucas,
    BMC Biology. 15, 40 (2017). DOI:10.1186/s12915-017-0380-8
  • Dynamic monitoring of p53 translocation to mitochondria for the analysis of specific inhibitors using luciferase-fragment complementation.
    N. Noda, R. Awais, R. Sutton, M. Awais, T. Ozawa,
    Biotechnology and Bioengineering. 114, 2818–2827 (2017). DOI:10.1002/bit.26407
  • A genetic screen to discover SUMOylated proteins in living mammalian cells.
    M. Komiya, A. Ito, M. Endo, D. Hiruma, M. Hattori, H. Saitoh, M. Yoshida, T. Ozawa,
    Scientific Reports. 7, 17443 (2017). DOI:10.1038/s41598-017-17450-7
  • Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift.
    Biotechnology for Biofuels. 10, 9 (2017). DOI:10.1186/s13068-016-0691-y
  • Spectral Mining for Discriminating Blood Origins in the Presence of Substrate Interference via Attenuated Total Reflection Fourier Transform Infrared Spectroscopy: Postmortem or Antemortem Blood?
    A. Takamura, K. Watanabe, T. Akutsu, H. Ikegaya, T. Ozawa,
    Analytical Chemistry. 89, 9797–9804 (2017). DOI:10.1021/acs.analchem.7b01756
  • In Search of NPY Y 4 R Antagonists: Incorporation of Carbamoylated Arginine, Aza-Amino Acids, or d -Amino Acids into Oligopeptides Derived from the C-Termini of the Endogenous Agonists.
    K. K. Kuhn, T. Littmann, S. Dukorn, M. Tanaka, M. Keller, T. Ozawa, G. Bernhardt, A. Buschauer,
    ACS Omega. 2, 3616–3631 (2017). DOI:10.1021/acsomega.7b00451
  • Liquid/Liquid Interfacial Synthesis of a Click Nanosheet.
    A. Rapakousiou, R. Sakamoto, R. Shiotsuki, R. Matsuoka, U. Nakajima, T. Pal, R. Shimada, A. Hossain, H. Masunaga, S. Horike, Y. Kitagawa, S. Sasaki, K. Kato, T. Ozawa, D. Astruc, H. Nishihara,
    Chemistry – A European Journal. 23, 8443–8449 (2017). DOI:10.1002/chem.201700201
  • Split luciferase complementation assay for the analysis of G protein-coupled receptor ligand response in Saccharomyces cerevisiae.
    Y. Fukutani, J. Ishii, A. Kondo, T. Ozawa, H. Matsunami, M. Yohda,
    Biotechnology and Bioengineering. 114, 1354–1361 (2017). DOI:10.1002/bit.26255
  • Single-shot phase-shifting incoherent digital holography.
    T. Tahara, T. Kanno, Y. Arai, T. Ozawa,
    Journal of Optics. 19, 065705 (2017). DOI:10.1088/2040-8986/aa6e82
  • Protein expression guided chemical profiling of living cells by the simultaneous observation of Raman scattering and anti-Stokes fluorescence emission.
    L. Chiu, T. Ichimura, T. Sekiya, H. Machiyama, T. Watanabe, H. Fujita, T. Ozawa, K. Fujita,
    Scientific Reports. 7, 43569 (2017). DOI:10.1038/srep43569

2016

  • Attenuation of chemokine receptor function and surface expression as an immunomodulatory strategy employed by human cytomegalovirus is linked to vGPCR US28.
    T. Frank, A. Reichel, O. Larsen, A.-C. Stilp, M. M. Rosenkilde, T. Stamminger, T. Ozawa, N. Tschammer,
    Cell Communication and Signaling. 14, 31 (2016). DOI:10.1186/s12964-016-0154-x
  • Label-free versus conventional cellular assays: Functional investigations on the human histamine H1 receptor.
    S. Lieb, T. Littmann, N. Plank, J. Felixberger, M. Tanaka, T. Schäfer, S. Krief, S. Elz, K. Friedland, G. Bernhardt, J. Wegener, T. Ozawa, A. Buschauer,
    Pharmacological Research. 114, 13–26 (2016). DOI:10.1016/j.phrs.2016.10.010
  • Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres.
    T. Yamada, H. Yoshimura, R. Shimada, M. Hattori, M. Eguchi, T. K. Fujiwara, A. Kusumi, T. Ozawa,
    Scientific Reports. 6, 38910 (2016). DOI:10.1038/srep38910
  • Bioluminescent Indicator for Highly Sensitive Analysis of Estrogenic Activity in a Cell-Based Format.
    O. Takenouchi, A. Kanno, H. Takakura, M. Hattori, T. Ozawa,
    Bioconjugate Chemistry. 27, 2689–2694 (2016). DOI:10.1021/acs.bioconjchem.6b00466
  • Optogenetic activation of axon guidance receptors controls direction of neurite outgrowth.
    M. Endo, M. Hattori, H. Toriyabe, H. Ohno, H. Kamiguchi, Y. Iino, T. Ozawa,
    Scientific Reports. 6, 23976 (2016). DOI:10.1038/srep23976
  • In Situ Characterization of Bak Clusters Responsible for Cell Death Using Single Molecule Localization Microscopy.
    Y. Nasu, A. Benke, S. Arakawa, G. J. Yoshida, G. Kawamura, S. Manley, S. Shimizu, T. Ozawa,
    Scientific Reports. 6, 27505 (2016). DOI:10.1038/srep27505
  • Confocal Bioluminescence Imaging for Living Tissues with a Caged Substrate of Luciferin.
    M. Hattori, G. Kawamura, R. Kojima, M. Kamiya, Y. Urano, T. Ozawa,
    Analytical Chemistry. 88, 6231–6238 (2016). DOI:10.1021/acs.analchem.5b04142
  • Genetically Encoded Fluorescent Probe for Imaging Apoptosis in Vivo with Spontaneous GFP Complementation.
    Y. Nasu, Y. Asaoka, M. Namae, H. Nishina, H. Yoshimura, T. Ozawa,
    Analytical Chemistry. 88, 838–844 (2016). DOI:10.1021/acs.analchem.5b03367

2015

  • An optogenetic system for interrogating the temporal dynamics of Akt.
    Y. Katsura, H. Kubota, K. Kunida, A. Kanno, S. Kuroda, T. Ozawa,
    Scientific Reports. 5, 14589 (2015). DOI:10.1038/srep14589
  • CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.
    T. Tamaru, M. Hattori, K. Honda, Y. Nakahata, P. Sassone-Corsi, G. T. J. van der Horst, T. Ozawa, K. Takamatsu,
    PLOS Biology. 13, e1002293 (2015). DOI:10.1371/journal.pbio.1002293
  • Recruitment of β -Arrestin 1 and 2 to the β 2 -Adrenoceptor: Analysis of 65 Ligands. T. Littmann, M. Göttle, M. T. Reinartz, S. Kälble, I. W. Wainer, T. Ozawa, R. Seifert,
    Journal of Pharmacology and Experimental Therapeutics. 355, 183–190 (2015). DOI:10.1124/jpet.115.227959
  • Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source.
    H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, H. Kano,
    Journal of Biophotonics. 8, 705–713 (2015). DOI:10.1002/jbio.201400059
  • A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells.
    M. Kodaka, Z. Yang, K. Nakagawa, J. Maruyama, X. Xu, A. Sarkar, A. Ichimura, Y. Nasu, T. Ozawa, H. Iwasa, M. Ishigami-Yuasa, S. Ito, H. Kagechika, Y. Hata,
    Experimental Cell Research. 336, 171–181 (2015). DOI:10.1016/j.yexcr.2015.06.015
  • Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans.
    T. Nishiguchi, T. Yamada, Y. Nasu, M. Ito, H. Yoshimura, T. Ozawa,
    Journal of Biomedical Optics. 20, 101205 (2015). DOI:10.1117/1.JBO.20.10.101205
  • Multimodal Imaging of Living Cells with Multiplex Coherent Anti-stokes Raman Scattering (CARS), Third-order Sum Frequency Generation (TSFG) and Two-photon Excitation Fluorescence (TPEF) Using a Nanosecond White-light Laser Source.
    H. SEGAWA, M. OKUNO, P. LEPROUX, V. COUDERC, T. OZAWA, H. KANO,
    Analytical Sciences. 31, 299–305 (2015). DOI:10.2116/analsci.31.299
  • High-throughput Live Cell Imaging and Analysis for Temporal Reaction of G Protein-coupled Receptor Based on Split Luciferase Fragment Complementation.
    M. HATTORI, T. OZAWA,
    Analytical Sciences. 31, 327–330 (2015). DOI:10.2116/analsci.31.327
  • Simultaneous Time-Lamination Imaging of Protein Association Using a Split Fluorescent Timer Protein.
    A. Takamura, M. Hattori, H. Yoshimura, T. Ozawa,
    Analytical Chemistry. 87, 3366–3372 (2015). DOI:10.1021/ac504583t
  • Structure-bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2-adrenoceptor.
    M. T. Reinartz, S. Kälble, T. Littmann, T. Ozawa, S. Dove, V. Kaever, I. W. Wainer, R. Seifert,
    Naunyn-Schmiedeberg’s Archives of Pharmacology. 388, 51–65 (2015). DOI:10.1007/s00210-014-1054-5

2014

  • p62/SQSTM1 Plays a Protective Role in Oxidative Injury of Steatotic Liver in a Mouse Hepatectomy Model.
    S. Haga, T. Ozawa, Y. Yamada, N. Morita, I. Nagashima, H. Inoue, Y. Inaba, N. Noda, R. Abe, K. Umezawa, M. Ozaki,
    Antioxidants & Redox Signaling. 21, 2515–2530 (2014). DOI:10.1089/ars.2013.5391
  • Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve.
    S. A. Hoyng, S. Gnavi, F. de Winter, R. Eggers, T. Ozawa, A. Zaldumbide, R. C. Hoeben, J. A. M Malessy, J. Verhaagen,
    Gene Therapy. 21, 549–557 (2014). DOI:10.1038/gt.2014.22
  • Electronically resonant third-order sum frequency generation spectroscopy using a nanosecond white-light supercontinuum.
    H. Segawa, N. Fukutake, P. Leproux, V. Couderc, T. Ozawa, H. Kano,
    Optics Express. 22, 10416 (2014). DOI:10.1364/OE.22.010416
  • Long Noncoding RNA NEAT1-Dependent SFPQ Relocation from Promoter Region to Paraspeckle Mediates IL8 Expression upon Immune Stimuli.
    K. Imamura, N. Imamachi, G. Akizuki, M. Kumakura, A. Kawaguchi, K. Nagata, A. Kato, Y. Kawaguchi, H. Sato, M. Yoneda, C. Kai, T. Yada, Y. Suzuki, T. Yamada, T. Ozawa, K. Kaneki, T. Inoue, M. Kobayashi, T. Kodama, Y. Wada, K. Sekimizu, N. Akimitsu,
    Molecular Cell 53, 393–406 (2014) DOI: 10.1016/j.molcel.2014.01.009.
  • Assay methods for small ubiquitin-like modifier (SUMO)–SUMO-interacting motif (SIM) interactions in vivo and in vitro using a split-luciferase complementation system.
    M. Hirohama, A. R. D. Voet, T. Ozawa, H. Saitoh, Y. Nakao, K. Y. J. Zhang, A. Ito, M. Yoshida, Analytical Biochemistry. 448, 92–94 (2014). DOI:10.1016/j.ab.2013.12.009

2013

  • Bioluminescent Probes to Analyze Ligand-Induced Phosphatidylinositol 3,4,5-Trisphosphate Production with Split Luciferase Complementation. L. Yang, Y. Nasu, M. Hattori, H. Yoshimura, A. Kanno, T. Ozawa,
    Analytical Chemistry. 85, 11352–11359 (2013). DOI:10.1021/ac402278f
  • Spatiotemporal visualization of proHB-EGF ectodomain shedding in living cells.
    H. Inoue, T. Sakaue, T. Ozawa, S. Higashiyama,
    The Journal of Biochemistry. 154, 67–76 (2013). DOI:10.1093/jb/mvt030
  • Longitudinal Bioluminescence Imaging of the Dynamics of Doxorubicin Induced Apoptosis.
    G. Niu, L. Zhu, D. N. Ho, F. Zhang, H. Gao, Q. Quan, N. Hida, T. Ozawa, G. Liu, X. Chen,
    Theranostics. 3, 190–200 (2013). DOI:10.7150/thno.5825
  • ROS Stress Resets Circadian Clocks to Coordinate Pro-Survival Signals.
    T. Tamaru, M. Hattori, Y. Ninomiya, G. Kawamura, G. Varès, K. Honda, D. P. Mishra, B. Wang, I. Benjamin, P. Sassone-Corsi, T. Ozawa, K. Takamatsu,
    PLoS ONE. 8, e82006 (2013). DOI:10.1371/journal.pone.0082006
  • Folding Coupled with Assembly in Split Green Fluorescent Proteins Studied by Structure-based Molecular Simulations.
    M. Ito, T. Ozawa, S. Takada,
    The Journal of Physical Chemistry B. 117, 13212–13218 (2013). DOI:10.1021/jp4032817
  • Sustained accurate recording of intracellular acidification in living tissues with a photo-controllable bioluminescent protein.
    M. Hattori, S. Haga, H. Takakura, M. Ozaki, T. Ozawa,
    Proceedings of the National Academy of Sciences of USA. 110, 9332–9337 (2013). DOI:10.1073/pnas.1304056110
  • Rational Design and Development of Near-Infrared-Emitting Firefly Luciferins Available In Vivo.
    R. Kojima, H. Takakura, T. Ozawa, Y. Tada, T. Nagano, Y. Urano,
    Angewandte Chemie International Edition. 52, 1175–1179 (2013). DOI:10.1002/anie.201205151
  • Analysis of temporal patterns of GPCR–β-arrestin interactions using split luciferase-fragment complementation.
    M. Hattori, M. Tanaka, H. Takakura, K. Aoki, K. Miura, T. Anzai, T. Ozawa,
    Molecular BioSystems. 9, 957 (2013). DOI:10.1039/c2mb25443c

2012

  • In Vivo Monitoring of Liver Damage Using Caspase-3 Probe.
    M. Ozaki, S. Haga, T. Ozawa,
    Theranostics. 2, 207–214 (2012). DOI:10.7150/thno.3806
  • Development of 5′- and 7′-Substituted Luciferin Analogues as Acid-Tolerant Substrates of Firefly Luciferase.
    H. Takakura, R. Kojima, T. Ozawa, T. Nagano, Y. Urano,
    ChemBioChem. 13, 1424–1427 (2012). DOI:10.1002/cbic.201200142
  • Fluorescent Probes for Imaging Endogenous β-Actin mRNA in Living Cells Using Fluorescent Protein-Tagged Pumilio.
    H. Yoshimura, A. Inaguma, T. Yamada, T. Ozawa,
    ACS Chemical Biology. 7, 999–1005 (2012). DOI:10.1021/cb200474a
  • Measuring CREB Activation Using Bioluminescent Probes That Detect KID–KIX Interaction in Living Cells.
    T. Ishimoto, H. Mano, T. Ozawa, H. Mori,
    Bioconjugate Chemistry. 23, 923–932 (2012). DOI:10.1021/bc200491j
  • Visualization and Quantitative Analysis of G Protein-Coupled Receptor−β-Arrestin Interaction in Single Cells and Specific Organs of Living Mice Using Split Luciferase Complementation.
    H. Takakura, M. Hattori, M. Takeuchi, T. Ozawa,
    ACS Chemical Biology. 7, 901–910 (2012). DOI:10.1021/cb200360z

2011

  • Synchronization of Circadian Per2 Rhythms and HSF1-BMAL1:CLOCK Interaction in Mouse Fibroblasts after Short-Term Heat Shock Pulse.
    T. Tamaru, M. Hattori, K. Honda, I. Benjamin, T. Ozawa, K. Takamatsu,
    PLoS ONE. 6, e24521 (2011). DOI:10.1371/journal.pone.0024521
  • Visualization of Nonengineered Single mRNAs in Living Cells Using Genetically Encoded Fluorescent Probes.
    T. Yamada, H. Yoshimura, A. Inaguma, T. Ozawa,
    Analytical Chemistry. 83, 5708–5714 (2011). DOI:10.1021/ac2009405
  • Real-Time Monitoring of Actin Polymerization in Living Cells Using Split Luciferase. T. Ishimoto, T. Ozawa, H. Mori,
    Bioconjugate Chemistry. 22, 1136–1144 (2011). DOI:10.1021/bc100595z
  • Dual-Color Bioluminescence Analysis for Quantitatively Monitoring G-Protein-Coupled Receptor and β-Arrestin Interactions.
    A. K. M. Kafi, M. Hattori, N. Misawa, T. Ozawa,
    Pharmaceuticals. 4, 457–469 (2011). DOI:10.3390/ph4030457

2010以前

  • p66Shc has a pivotal function in impaired liver regeneration in aged mice by a redox-dependent mechanism.
    S. Haga, N. Morita, K. Irani, M. Fujiyoshi, T. Ogino, T. Ozawa, M. Ozaki,
    Laboratory Investigation. 90, 1718–1726 (2010).
    DOI:10.1038/labinvest.2010.119
  • Ratiometric Bioluminescence Indicators for Monitoring Cyclic Adenosine 3′,5′-Monophosphate in Live Cells Based on Luciferase-Fragment Complementation.
    M. Takeuchi, Y. Nagaoka, T. Yamada, H. Takakura, T. Ozawa,
    Analytical Chemistry. 82, 9306–9313 (2010).
    DOI:10.1021/ac102692u
  • S. B. Kim, T. Ozawa, Creating bioluminescent indicators to visualise biological events in living cells and animals. Supramolecular Chemistry. 22, 440–449 (2010).
    DOI:10.1080/10610278.2010.485251
  • Rapid and High-Sensitivity Cell-Based Assays of Protein−Protein Interactions Using Split Click Beetle Luciferase Complementation: An Approach to the Study of G-Protein-Coupled Receptors.
    N. Misawa, A. K. M. Kafi, M. Hattori, K. Miura, K. Masuda, T. Ozawa,
    Analytical Chemistry. 82, 2552–2560 (2010).
    DOI:10.1021/ac100104q
  • LUCIFERASES FOR THE STUDY OF PROTEIN–PROTEIN INTERACTIONS IN LIVE CELLS AND ANIMALS.
    A. K. M. KAFI, M. HATTORI, T. OZAWA,
    Nano LIFE. 1, 79–87 (2010).
    DOI:10.1142/S1793984410000079
  • T. Ozawa, Imaging biological molecules using novel optical probes. Photomedicine and photobiology. 31, 27–28 (2009).
  • High-Sensitivity Real-Time Imaging of Dual Protein-Protein Interactions in Living Subjects Using Multicolor Luciferases.
    N. Hida, M. Awais, M. Takeuchi, N. Ueno, M. Tashiro, C. Takagi, T. Singh, M. Hayashi, Y. Ohmiya, T. Ozawa,
    PLoS ONE. 4, e5868 (2009).
    DOI:10.1371/journal.pone.0005868
  • Cyclic Luciferase for Real-Time Sensing of Caspase-3 Activities in Living Mammals.
    A. Kanno, Y. Yamanaka, H. Hirano, Y. Umezawa, T. Ozawa,
    Angewandte Chemie International Edition. 46, 7595–7599 (2007).
    DOI:10.1002/anie.200700538
  • Nongenomic Activity of Ligands in the Association of Androgen Receptor with Src.
    S. B. Kim, A. Kanno, T. Ozawa, H. Tao, Y. Umezawa,
    ACS Chemical Biology. 2, 484–492 (2007).
    DOI:10.1021/cb7000439
  • Imaging dynamics of endogenous mitochondrial RNA in single living cells.
    T. Ozawa, Y. Natori, M. Sato, Y. Umezawa,
    Nature Methods. 4, 413–419 (2007).
    DOI:10.1038/nmeth1030
  • A Minimal Peptide Sequence That Targets Fluorescent and Functional Proteins into the Mitochondrial Intermembrane Space.
    T. Ozawa, Y. Natori, Y. Sako, H. Kuroiwa, T. Kuroiwa, Y. Umezawa,
    ACS Chemical Biology. 2, 176–186 (2007).
    DOI:10.1021/cb600492a
  • A proinflammatory cytokine sensor cell for assaying inflammatory activities of nanoparticles.
    S. B. Kim, T. Ozawa, H. Tao, Y. Umezawa,
    Analytical Biochemistry. 362, 148–150 (2007).
    DOI:10.1016/j.ab.2006.11.004
  • Methods for Imaging and Analyses of Intracellular Organelles Using Fluorescent and Luminescent Proteins.
    M. TAKEUCHI, T. OZAWA,
    Analytical Sciences. 23, 25–29 (2007).
    DOI:10.2116/analsci.23.25
  • A method for determining the activities of cytokines based on the nuclear transport of nuclear factor-κB. S. B. Kim, Y. Natori, T. Ozawa, Y. Umezawa, H. Tao,
    Analytical Biochemistry. 359, 147–149 (2006).
    DOI:10.1016/j.ab.2006.07.013
  • Genetically Encoded Optical Probe for Detecting Release of Proteins from Mitochondria toward Cytosol in Living Cells and Mammals.
    A. Kanno, T. Ozawa, Y. Umezawa,
    Analytical Chemistry. 78, 8076–8081 (2006).
    DOI:10.1021/ac061488a
  • Designing split reporter proteins for analytical tools.
    T. Ozawa,
    Analytica Chimica Acta. 556, 58–68 (2006).
    DOI:10.1016/j.aca.2005.06.026
  • Intein-Mediated Reporter Gene Assay for Detecting Protein−Protein Interactions in Living Mammalian Cells.
    A. Kanno, T. Ozawa, Y. Umezawa,
    Analytical Chemistry. 78, 556–560 (2006).
    DOI:10.1021/ac051451a
  • A genetically encoded indicator for assaying bioactive chemicals that induce nuclear transport of glucocorticoid receptor.
    S. B. Kim, T. Ozawa, Y. Umezawa,
    Analytical Biochemistry. 347, 213–220 (2005)
    DOI:10.1016/j.ab.2005.09.011
  • Quantitative Determination of Protein Nuclear Transport Induced by Phosphorylation or by Proteolysis.
    S. B. Kim, R. Takao, T. Ozawa, Y. Umezawa,
    Analytical Chemistry. 77, 6928–6934 (2005).
    DOI:10.1021/ac050966z
  • Genetically Encoded Stress Indicator for Noninvasively Imaging Endogenous Corticosterone in Living Mice.
    S. B. Kim, T. Ozawa, Y. Umezawa,
    Analytical Chemistry. 77, 6588–6593 (2005).
    DOI:10.1021/ac0510078
  • Methods of Analysis for Protein Dynamics in Living Cells Based on Protein Splicing. T. Ozawa,
    Bulletin of the Chemical Society of Japan. 78, 739–751 (2005).
    DOI:10.1246/bcsj.78.739
  • A high-throughput screening of genes that encode proteins transported into the endoplasmic reticulum in mammalian cells.
    T. Ozawa,
    Nucleic Acids Research. 33, e34–e34 (2005).
    DOI:10.1093/nar/gni032
  • High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase.
    S. B. Kim, T. Ozawa, S. Watanabe, Y. Umezawa,
    Proceedings of the National Academy of Sciences of the USA. 101, 11542–11547 (2004).
    DOI:10.1073/pnas.0401722101
  • Locating a Protein−Protein Interaction in Living Cells via Split Renilla Luciferase Complementation. A. Kaihara, Y. Kawai, M. Sato, T. Ozawa, Y. Umezawa,
    Analytical Chemistry. 75, 4176–4181 (2003).
    DOI:10.1021/ac0300800
  • A Screening Method for Estrogens Using an Array-Type DNA Glass Slide.
    S. B. KIM, T. OZAWA, Y. UMEZAWA,
    Analytical Sciences. 19, 499–504 (2003).
    DOI:10.2116/analsci.19.499
  • A genetic approach to identifying mitochondrial proteins. T. Ozawa, Y. Sako, M. Sato, T. Kitamura, Y. Umezawa,
    Nature Biotechnology. 21, 287–293 (2003).
    DOI:10.1038/nbt791
  • Y. Umezawa, T. Ozawa, M. Sato, Probing Chemical Processes in Living Cells: Applications for Assay and Screening of Chemicals that Disrupt Cellular Signaling Pathways. Bulletin of the Chemical Society of Japan. 75, 1423–1433 (2002).
    DOI:10.1246/bcsj.75.1423
  • Fluorescent indicators for imaging protein phosphorylation in single living cells.
    M. Sato, T. Ozawa, K. Inukai, T. Asano, Y. Umezawa,
    Nature Biotechnology. 20, 287–294 (2002).
    DOI:10.1038/nbt0302-287
  • Peptide Assemblies in Living Cells. Methods for Detecting Protein-Protein Interactions†.
    T. Ozawa, Y. Umezawa,
    Supramolecular Chemistry. 14, 271–280 (2002).
    DOI:10.1080/10610270290026185
  • Protein Splicing-Based Reconstitution of Split Green Fluorescent Protein for Monitoring Protein−Protein Interactions in Bacteria: Improved Sensitivity and Reduced Screening Time.
    T. Ozawa, M. Takeuchi, A. Kaihara, M. Sato, Y. Umezawa,
    Analytical Chemistry. 73, 5866–5874 (2001).
    DOI:10.1021/ac010717k
  • Screening method for antagonists that inhibit the binding of calmodulin to a target peptide using surface plasmon resonance.
    K. Sasaki, T. Ozawa, Y. Umezawa,
    Analytica Chimica Acta. 447, 63–74 (2001).
    DOI:10.1016/S0003-2670(01)01290-9
  • Detection of Protein-Protein Interactions in vivo Based on Protein Splicing.
    T. Ozawa and Y. Umezawa,
    Current Opinion in Chemical Biology, 5, 578-583 (2001).
    DOI:10.1016/S1367-5931(00)00244-1
  • Imaging of Conformational Changes of Proteins with a New Environment-Sensitive Fluorescent Probe Designed for Site-Specific Labeling of Recombinant Proteins in Live Cells. 
    J. Nakanishi, T. Nakajima, M, Sato, T, Ozawa, K. Tohda and Y. Umezawa,
    Analytical Chemistry, 73, 2920-2928 (2001).
    DOI:10.1021/ac001528pPubMed:11467536
  • Split Luciferase as an Optical Probe for Detecting Protein—Protein Interactions in Mammalian Cells Based on Protein Splicing.
    T. Ozawa, A. Kaihara, M. Sato, K. Tachihara and Y. Umezawa,
    Analytical Chemistry, 73, 2516-2521 (2001).
    DOI:10.1021/ac0013296
  • Fluorescent Indicators for Cyclic GMP Based on Cyclic GMP-Dependent Protein Kinase Ia and Green Fluorescent Proteins.
    M. Sato, N. Hida, T. Ozawa and Y. Umezawa,
    Analytical Chemistry, 72, 5918-5924 (2000).
    DOI:10.1021/ac0006167
  • A Screening Method for Substrates of Multidrug Resistance-associated Protein (MRP).
    Z. Quan, T. Ozawa, M. Sato and Y. Umezawa,
    Analytical Chim. Acta, 423, 197-203 (2000).
    DOI:10.1016/S0003-2670(00)01116-8
  • How Can Ca2+ Selectively Activate Recoverin in the Presence of Mg2+?  Surface Plasmon Resonance and FT-IR Spectroscopic Studies.
    T. Ozawa, M. Fukuda, M. Nara, A. Nakamura, K. Kohama and Y. Umezawa,
    Biochemistry, 39, 14495-14503 (2000).
    DOI:10.1021/bi001930y
  • A Fluorescent Indicator for Detecting Protein–Protein Interactions in Vivo Based on Protein Splicing.
    T. Ozawa, S. Nogami, M. Sato, Y. Ohya and Y. Umezawa,
    Analytical Chemistry, 72, No. 21, 5151-5157 (2000).
    DOI:10.1021/ac000617z
  • Novel Interaction of the Voltage-Dependent Sodium Channel (VDSC) with Calmodulin: Does VDSC Acquire Calmodulin-Mediated Ca2+-Sensitivity?
    M. Mori, T. Konno, T. Ozawa, M. Murata, K. Imoto and K. Nagayama,
    Biochemistry, 39, 1316-1323 (2000).
    DOI:10.1021/bi9912600
  • An SPR-based Screening Method for Agonist Selectivity for Insulin Signaling Pathways Based on the Binding of Phosphotyrosine to its Specific Binding Protein. 
    T. Yoshida, M. Sato, T. Ozawa and Y. Umezawa,
    DOI:10.1021/ac990795w
  • Metal Ion Selectivity for Formation of the Calmodulin-Metal-Target Peptide Ternary Complex Studied by Surface Plasmon Resonance Spectroscopy.
    T. Ozawa, K. Sasaki and Y. Umezawa,
    Biochimica et Biophysica Acta, 1434, 211-220 (1999).
    DOI:10.1016/S0167-4838(99)00185-5
  • A Fluorescent Indicator for Tyrosine Phosphorylation-Based Insulin Signaling Pathways. 
    M. Sato, T. Ozawa, T. Yoshida and Y. Umezawa,
    Analytical Chemistry
    , 71, 3948-3954 (1999)
    DOI:10.1021/ac990318d
  • An Assay Method for Evaluating Chemical Selectivity of Agonists for Insulin Signaling Pathways Based on Agonist-Induced Phosphorylation of a Target Peptide. 
    T. Ozawa, M. Sato, M. Sugawara and Y. Umezawa,
    Analytical Chemistry, 70, 2345-2352 (1998).
    DOI:10.1021/ac971192s
  • An Optical Method for Evaluating Ion Selectivity for Calcium Signaling Pathways in the Cell.
    T. Ozawa, M. Kakuta, M. Sugawara, Y. Umezawa and M. Ikura,
    Analytical Chemistry
    , 69, 3081-3085 (1997).
    DOI:10.1021/ac9613141

総説・著書

2022

  • Dumancas, G.G.,Subong, B.J.J., Ozawa, T. Rodney, T.L. Hikkaduwa Koralege, R.S., Pham-Bugayong, P.J. Thiabendazole. Encyclopedia of Toxicology, 4th edition (Elsevier)(2022).
  • 「二分割発光タンパク質の再構成法を用いる細胞死イメージング」小澤岳昌,医学のあゆみ283, 551-557 (2022).
  • 「実験データ分析入門」Graham Currell著,小澤岳昌訳,東京化学同人 (2022).
  • 「先端の分析法(第2版)」澤田嗣郎監修,小澤岳昌,北森武彦,中村洋,藤浪眞紀,宮村一夫編集,NTS(2022).
  • 「FRETプローブ:先端の分析法(第2版)」上田善文,小澤岳昌,NTS,p324-328(2022).
  • 「タンパク質再構成法:先端の分析法(第2版)」小澤岳昌,NTS,p329-332(2022).
  • 「蛍光共鳴エネルギー移動(FRET)顕微鏡:先端の分析法(第2版)」上田善文,小澤岳昌,NTS,p374-375(2022).

2021

  • M Endo, T Ozawa, Functional Modulation of Receptor Proteins on Cellular Interface with Optogenetic System. Optogenetics, 2274, 247–263 (2021).
  • Takamura, Ayari, Ozawa, Takeaki. Recent advances of vibrational spectroscopy and chemometrics for forensic biological analysis. Analyst 146, 7431–7449 (2021).
    DOI:10.1007/978-1-0716-1258-3_7
  • 尾崎倫孝,小澤岳昌,. 生体分子機能を可視化する発光イメージングと応用技術 OPTRONICS 40, 104–110 (2021).
  • Littmann, Timo, Ozawa, Takeaki, Bernhardt, Günther. Quantitative Determination and Imaging of Gαq Signaling in Live Cells via Split-Luciferase Complementation. Methods. Mol. Biol. 2274, 69–78 (2021).
    DOI:10.1007/978-1-0716-1258-3_7
  • Li, Qiaojing, Yoshimura, Hideaki, Ozawa, Takeaki. A Split-Luciferase-Based Cell Fusion Assay for Evaluating the Myogenesis-Promoting Effects of Bioactive Molecules. Methods. Mol. Biol. 2274, 79–87 (2021).
    DOI:10.1007/978-1-0716-1258-3_8
  • Takenouchi, Osamu, Yoshimura, Hideaki, Ozawa, Takeaki. Quantitative Analysis of Membrane Receptor Trafficking Manipulated by Optogenetic Tools. Methods. Mol. Biol. 2274, 15–23 (2021)..
    DOI:10.1007/978-1-0716-1258-3_2
  • Endo, Mizuki, Ozawa, Takeaki. Functional Modulation of Receptor Proteins on Cellular Interface with Optogenetic System. Adv. Exp. Med. Biol. 1293, 247-263 (2021).
    DOI:10.1007/978-981-15-8763-4_15
  • Endo, Mizuki, Ozawa, Takeaki. Advanced Bioluminescence System for In Vivo Imaging with Brighter and Red-Shifted Light Emission. Int. J. Mol. Sci. 21, 6538 (2021).
    DOI:10.3390/ijms21186538

2020

  • 小澤岳昌. バイオイメージング. 東京, 共立出版, 2020, ISBN978-4-320-04457-9.
  • Yamada, Mayumi, Nagasaki, Shinji C., Ozawa, Takeaki, Imayoshi, Itaru. Light-mediated control of Gene expression in mammalian cells. Neuroscience Research. 2020, vol. 152, p. 66–77. https://linkinghub.elsevier.com/retrieve/pii/S0168010219306807.
    DOI:10.1016/j.neures.2019.12.018

2019

  • 吉村英哲, 小澤岳昌. “二分割ルシフェラーゼ再構成法による発光プローブ”. 発光イメージング実験ガイド. 永井健治, 小澤岳昌編. 羊土社, 2019, p. 62–70.
  • 小澤岳昌 (訳). スクーグ分析化学, West Skoog and Holler Crouch (著). 東京化学同人, 2019.
  • 小澤岳昌. “アポトーシスの発光イメージング”. 発光イメージング実験ガイド. 永井健治, 小澤岳昌編. 羊土社, 2019, p. 91–95.
  • Yoshimura, Hideaki, Ozawa, Takeaki. “Optical Control of G Protein-Coupled Receptor Activities in Living Cells”. Springer Series in Chemical Physics. 2019, p. 129–138. http://link.springer.com/10.1007/978-3-030-05974-3_7.
    DOI:10.1007/978-3-030-05974-3_7

2018

  • Vriz, Sophie, Ozawa, Takeaki. Optogenetics. Cambridge, Royal Society of Chemistry, 2018, (Comprehensive Series in Photochemical &Photobiological Sciences), ISBN978-1-78801-237-9. http://dx.doi.org/10.1039/9781788013284 http://ebook.rsc.org/?DOI=10.1039/9781788013284.
    DOI:10.1039/9781788013284
  • Kawamura, Genki, Ozawa, Takeaki. “CHAPTER 8. Quantitative Control of Kinase Activity with a Mathematical Model”. Optogenetics: Light-driven Actuators and Light-emitting Sensors in Cell Biology. Vriz, Sophie, Ozawa, Takeaki編. 2018, p. 149–168, ISBN978-1-78801-237-9. http://ebook.rsc.org/?DOI=10.1039/9781788013284-00149.
    DOI:10.1039/9781788013284-00149
  • 小澤岳昌. “第3章プローブタンパク質”. 蛍光イメージング/MRIプローブの開発. シーエムシー出版, 2018, p. 22–34.
  • 吉村英哲, 小澤岳昌. “生命分子の機能を超えるための解析化学”. 生命機能に迫る分子化学. 化学同人, 2018, p. 28–33.
  • Yoshimura, Hideaki, Ozawa, Takeaki. “Real-Time Fluorescence Imaging of Single-Molecule Endogenous Noncoding RNA in Living Cells”. Methods in Molecular Biology. 2018, p. 337–347. http://link.springer.com/10.1007/978-1-4939-7213-5_22.
    DOI:10.1007/978-1-4939-7213-5_22
  • OZAWA, Takeaki. Nano-Materials for Bioimaging. Analytical Sciences. 2018, vol. 34, no. 2, p. 125–126. https://www.jstage.jst.go.jp/article/analsci/34/2/34_125/_article.
    DOI:10.2116/analsci.34.125

2017

  • 小澤岳昌. 日本分析化学会英文誌の情報発信強化策. 情報管理. 2017, vol. 60, no. 1, p. 37–42.
    DOI:10.1241/johokanri.60.37
  • 小澤岳昌. “クリスチャン Excelで解く分析化学 3化学平衡の一般概念”. Analytical Chemistry 7th edition 訳. 丸善出版, 2017, p. 29–38.
  • 遠藤瑞己, 小澤岳昌. 光誘導性二量体・多量体形成システムを用いた受容体タンパク質活性の制御. 生体の科学. 2017, vol. 68, p. 494–495.
  • Ozawa, Takeaki. “Luminescent Sensors for Single-Cell Analysis”. Springer Series in Chemical Physics. 2017, p. 97–107. http://link.springer.com/10.1007/978-3-319-52431-3_9.
    DOI:10.1007/978-3-319-52431-3_9
  • Endo, M., Ozawa, T. Strategies for development of optogenetic systems and their applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2017, vol. 30, no. SI, p. 10–23. https://linkinghub.elsevier.com/retrieve/pii/S1389556716300612.
    DOI:10.1016/j.jphotochemrev.2016.10.003

2016

  • 小澤岳昌. “クリスチャン分析化学 I. 基礎編. 6章化学平衡の一般概念”. Analytical Chemistry 7th edition 訳. 丸善出版, 2016, p. 179–206.
  • 服部満, 小澤岳昌. “三次元発光イメージング”. 先端計測・研究を支える機器開発. 化学同人, 2016, p. 82–87.
  • Kim, Sung Bae, Ozawa, Takeaki, Umezawa, Yoshio. A genetically encoded bioluminescent indicator for illuminating proinflammatory cytokines. MethodsX. 2016, vol. 3, p. 483–489. https://linkinghub.elsevier.com/retrieve/pii/S2215016116300255.
    DOI:10.1016/j.mex.2016.06.001
  • Yoshimura, H., Ozawa, T. “Monitoring of RNA Dynamics in Living Cells Using PUM-HD and Fluorescent Protein Reconstitution Technique”. VISUALIZING RNA DYNAMICS IN THE CELL. Filonov, G. S., Jaffrey, S. R.編. 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA, ELSEVIER ACADEMIC PRESS INC, 2016, p. 65–85, (Methods in Enzymology), ISBN978-0-12-802488-1 978-0-12-802292-4. https://linkinghub.elsevier.com/retrieve/pii/S0076687916001300.
    DOI:10.1016/bs.mie.2016.03.018
  • Hattori, Mitsuru, Ozawa, Takeaki. “Live Cell Bioluminescence Imaging in Temporal Reaction of G Protein-Coupled Receptor for High-Throughput Screening and Analysis”. Methods in Molecular Biology. 2016, p. 195–202. http://link.springer.com/10.1007/978-1-4939-3813-1_16.
    DOI:10.1007/978-1-4939-3813-1_16

2015

  • 菅野憲, 小澤岳昌. “発光の生物 -6.1.2 液相化学発光反応”. 発光の事典. 朝倉書店, 2015, p. 488–493.
  • 小澤岳昌. ジャーナル戦国時代. ぶんせき. 2015, vol. 9, p. 371.
  • 菅野憲, 小澤岳昌. “発光の生物 -6.1.1 化学発光概説”. 発光の事典. 朝倉書店, 2015, p. 482–488.
  • 菅野憲, 小澤岳昌. “発光の生物 -7.2 2.2再構成法”. 発光の事典. 朝倉書店, 2015, p. 616–623.
  • 菅野憲, 小澤岳昌. “発光の生物 -7.1.6 化学発光”. 発光の事典. 朝倉書店, 2015, p. 561–570.
  • Hattori, Mitsuru, Ozawa, Takeaki. Bioluminescent tools for the analysis of G-protein-coupled receptor and arrestin interactions. RSC Advances. 2015, vol. 5, no. 17, p. 12655–12663. http://xlink.rsc.org/?DOI=C4RA14979C.
    DOI:10.1039/C4RA14979C
  • Takakura, Hideo, Hattori, Mitsuru, Tanaka, Miho, Ozawa, Takeaki. “Cell-Based Assays and Animal Models for GPCR Drug Screening”. Methods in Molecular Biology. Prazeres, D. M. F., Martins, S. A. M.編. 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA, HUMANA PRESS INC, 2015, p. 257–270, (Methods in Molecular Biology), ISBN978-1-4939-2336-6. http://link.springer.com/10.1007/978-1-4939-2336-6_18.
    DOI:10.1007/978-1-4939-2336-6_18
  • Ozawa, Takeaki. “Molecular Imaging for Bioanalysis” Analytical Sciences. 2015, vol. 31, no. 4, p. 243–243. https://www.jstage.jst.go.jp/article/analsci/31/4/31_243/_article.
    DOI:10.2116/analsci.31.243
  • 吉村英哲, 小澤岳昌. 蛍光顕微鏡を用いた生細胞内1分子可視化解析法. ナノ学会会報. 2015, vol. 13, no. 2, p. 61–65.
  • 吉村英哲, 小澤岳昌. 生細胞内RNAイメージング. 細胞工学. 2015, vol. 34, p. 53–58.

2014

  • 服部満, 田中みほ, 小澤岳昌. “GPCRに作用する化合物のスクリーニング”. Clinical Neuroscience. 中外医学社, 2014, p. 128–129.
  • HATTORI, Mitsuru, OZAWA, Takeaki. Split Luciferase Complementation for Analysis of Intracellular Signaling. Analytical Sciences. 2014, vol. 30, no. 5, p. 539–544. http://jlc.jst.go.jp/DN/JST.JSTAGE/analsci/30.539?lang=en&from=CrossRef&type=abstract.
    DOI:10.2116/analsci.30.539
  • Yoshimura, Hideaki, Ozawa, Takeaki. Methods of Split Reporter Reconstitution for the Analysis of Biomolecules. The Chemical Record. 2014, vol. 14, no. 3, p. 492–501. http://doi.wiley.com/10.1002/tcr.201402001.
    DOI:10.1002/tcr.201402001

2013

  • Kim, Sung, Ozawa, Takeaki. Fabrication of Split-Luciferase Complementation Assays for Molecular Imaging. Current Molecular Imaging. 2013, vol. 2, no. 2, p. 148–157. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=2211-5552&volume=2&issue=2&spage=148.
    DOI:10.2174/22115552113029990001
  • Ozawa, Takeaki, Yoshimura, Hideaki, Kim, Sung Bae. Advances in Fluorescence and Bioluminescence Imaging. Analytical Chemistry. 2013, vol. 85, no. 2, p. 590–609. https://pubs.acs.org/doi/10.1021/ac3031724.
    DOI:10.1021/ac3031724
  • 金誠培, 小澤岳昌, 長縄竜一. ホルモン診断に資するルミネセンス分析技術の進歩. ぶんせき. 2013, vol. 467, p. 678–686.

2012

  • 宮脇敦史, 小澤岳昌, 高松哲郎, 長野哲雄. 分子イメージング−基礎から創薬までの新展開(座談会). ヒューマンサイエンス. 2012, vol. 23, no. 4, p. 4–11.
  • 服部満, 小澤岳昌. “タンパク質翻訳後修飾細胞内イメージング”. ここまで進んだバイオセンシング・イメージング. 日本化学会編. 化学同人, 2012, p. 108–113.
  • 小澤岳昌. 生体分子と細胞内シグナルの可視化分析法. ヒューマンサイエンス. 2012, vol. 23, no. 4, p. 12–16.
  • Kim, Sung, Hattori, Mitsuru, Ozawa, Takeaki. Intelligent Design of Nano-Scale Molecular Imaging Agents. International Journal of Molecular Sciences. 2012, vol. 13, no. 12, p. 16986–17005. http://www.mdpi.com/1422-0067/13/12/16986.
    DOI:10.3390/ijms131216986

2011

  • 菅野憲, 小澤岳昌. “対象別試料分析法 5.4.5 細胞”. 分析化学便覧. 日本分析化学会編編. 化学同人, 2011, p. 516–522.
  • 佐藤健太郎, 小澤岳昌. 写真で見る日本化学の源流. 化学. 2011, vol. 66, p. 43–47.
  • 上村想太郎, 小澤岳昌, 加地範国, 権田幸祐. 見つけることに意義がある—1分子計測技術の可能性—. 現代化学. 2011, vol. 488, p. 26–30.
  • 小澤岳昌. “プローブタンパク質”. 蛍光イメージング/MRIプローブの開発. 菊地和也監修編. シーエムシー出版, 2011, p. 22–34.
  • 岳昌小澤. 生命分子科学. 学術の動向. 2011, vol. 16, no. 5, p. 5\_53-5\_57.
    DOI:10.5363/tits.16.5_53
  • Awais, Muhammad, Ozawa, Takeaki. Illuminating intracellular signaling and molecules for single cell analysis. Molecular BioSystems. 2011, vol. 7, no. 5, p. 1376. http://xlink.rsc.org/?DOI=c0mb00328j.
    DOI:10.1039/c0mb00328j
  • Kanno, Akira, Ozawa, Takeaki, Umezawa, Yoshio. “Detection of Protein–Protein Interactions in Bacteria by GFP-Fragment Reconstitution”. HETEROLOGOUS GENE EXPRESSION IN E COLI: METHODS AND PROTOCOLS. Evans, T. C., Xu, Q. M 編. 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA, HUMANA PRESS INC, 2011, p. 251–258, (Methods in Molecular Biology), ISBN978-1-61737-966-6. http://link.springer.com/10.1007/978-1-61737-967-3_15.
    DOI:10.1007/978-1-61737-967-3_15
  • 菅野憲, 小澤岳昌. タンパク質核内移行の可視化. 生体の科学. 2011, vol. 65, p. 494–495.
  • Ozawa, Takeaki, Umezawa, Yoshio. Imaging of Endogenous RNA Using Genetically Encoded Probes. Current Protocols in Chemical Biology. 2011, vol. 3, no. 1, p. 27–37. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470559277.ch100152.
    DOI:10.1002/9780470559277.ch100152
  • 小澤岳昌. 発光タンパク質による細胞活動リアルタイム観察. Bioindustry. 2011, vol. 28, p. 11–17.
  • Ozawa, Takeaki, Umezawa, Yoshio. “Genetically-Encoded Fluorescent Probes for Imaging Endogenous mRNA in Living Cells”. RNA DETECTION AND VISUALIZATION: METHODS AND PROTOCOLS. Gerst JE編. 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA, HUMANA PRESS INC, 2011, p. 175–188, (Methods in Molecular Biology), ISBN978-1-61779-004-1. http://link.springer.com/10.1007/978-1-61779-005-8_11.
    DOI:10.1007/978-1-61779-005-8_11

2010以前

  • 小澤岳昌. “生体分子と生理機能を可視化するタンパク質再構成法”. シングルセル解析の最前線. 神原秀記, 松永是, 植田充美(監修)編. シーエムシー出版, 2010, p. 40–48.
  • 小澤岳昌. “生細胞内mRNAイメージングの現状と課題”. 生命現象を理解する分子ツール. 浜地格, 二木史朗編. 化学同人, 2010, p. 33–40, (化学フロンティア(22)).
  • 小澤岳昌. 蛍光・発光タンパク質を用いた再構成法による分子イメージング. 実験医学. 2010, vol. 28, p. 27–32.
  • 小澤岳昌. 発光タンパク質で細胞内をみる. 未来材料. 2009, vol. 9, p. 28–35.
  • 小澤岳昌. “RNAとタンパク質局在のイメージング(新しい地平をひらく分析手法の最前線)”. 化学フロンティア. 北森武彦編. 化学同人, 2009, p. 111–118.
  • 小澤岳昌. “蛍光タンパク質の設計と応用”. 超分子・サイエンス&テクノロジー. 国武豊喜編. エヌ・ティー・エス, 2009, p. 880–889.
  • 小澤岳昌. 新領域開拓の先導的立場を担う化学. 化学. 2009, vol. 64, p. 21–22.
  • 小澤岳昌 (監訳), 大森充香(訳). 光る遺伝子, Mark Zimmer (著). 丸善, 2009.
  • 小澤岳昌. 生体分子の機能を可視化するGFP再構成法. 化学と工業. 2009, vol. 62, p. 129–132.
  • Kanno, Akira, Umezawa, Yoshio, Ozawa, Takeaki. “Detection of Apoptosis Using Cyclic Luciferase in Living Mammals”. BIOLUMINESCENCE: METHODS AND PROTOCOLS, SECOND EDITION. Rich, P. B., Douillet, C.編. 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA, HUMANA PRESS INC, 2009, p. 105–114, (Methods in Molecular Biology), ISBN978-1-60327-320-6. http://link.springer.com/10.1007/978-1-60327-321-3_9.
    DOI:10.1007/978-1-60327-321-3_9
  • Kanno, Akira, Ozawa, Takeaki, Umezawa, Yoshio. “Bioluminescent Imaging of MAPK Function with Intein-Mediated Reporter Gene Assay”. BIOLUMINESCENCE: METHODS AND PROTOCOLS, SECOND EDITION. Rich, P. B., Douillet, C.編. 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA, HUMANA PRESS INC, 2009, p. 185–192, (Methods in Molecular Biology), ISBN978-1-60327-320-6. http://link.springer.com/10.1007/978-1-60327-321-3_15.
    DOI:10.1007/978-1-60327-321-3_15
  • OZAWA, Takeaki. Protein Reconstitution Methods for Visualizing Biomolecular Function in Living Cells. YAKUGAKU ZASSHI. 2009, vol. 129, no. 3, p. 289–295. https://www.jstage.jst.go.jp/article/yakushi/129/3/129_3_289/_article.
    DOI:10.1248/yakushi.129.289
  • 小澤岳昌, 宮脇敦史. クラゲから生まれたGFP革命. 現代化学. 2008, no. 12, p. 25–28.
  • 小澤岳昌. “可視化プローブによる時空間情報を損なわないミトコンドリアRNAの動態観察”. ナノイメージング. エヌ・ティー・エス, 2008, p. 199–206.
  • 小澤岳昌. “生理機能を可視化する新たな分子プローブ”. ナノメディシン. 宇理須恒雄編. オーム社, 2008, p. 13–24.
  • Ozawa, Takeaki. Molecular Science for Analyzing Dynamics of Biomolecules in Living Cells. Journal of Japan Society of Computer Aided Surgery. 2008, vol. 10, no. 4, p. 489–493. https://www.jstage.jst.go.jp/article/jscas1999/10/4/10_4_489/_article.
    DOI:10.5759/jscas1999.10.489
  • 小澤岳昌. RNAイメージング法. 実験医学増刊. 2008, vol. 26, p. 59–67.
  • 小澤岳昌. タンパク質再構成法を用いた細胞内生体分子の解析法. BIOINDUSTRY. 2008, vol. 25, p. 27–36.
  • 菅野憲, 小澤岳昌. レポータータンパク質の再構成法を利用した生体分子イメージング. 生体の科学. 2008, vol. 59, p. 66–72.
  • 小澤岳昌. “細胞の構造と機能:細胞内”. ナノテクのためのバイオ入門. 荻野俊郎, 宇理須恒雄編. 共立出版, 2007.
  • Ozawa, Takeaki, Umezawa, Yoshio. A Genetic Method to Identify Mitochondrial Proteins in Living Mammalian Cells. Protein Targeting Protocols. 2007, p. 119–130. http://link.springer.com/10.1007/978-1-59745-466-7_8.
    DOI:10.1007/978-1-59745-466-7_8PubMed:17951684
  • Ozawa, Takeaki, Umezawa, Yoshio. Identification of Proteins Targeted Into the Endoplasmic Reticulum by cDNA Library Screening. Protein Targeting Protocols. 2007, p. 269–280. http://link.springer.com/10.1007/978-1-59745-466-7_18.
    DOI:10.1007/978-1-59745-466-7_18
  • Wei, Chiming, Yamato, Masayuki, Wei, Wenchi, Zhao, Xiaojun, Tsumoto, Kanta, Yoshimura, Tetsuro, Ozawa, Takeaki, Chen, Yu-Ju. Genetic Nanomedicine and Tissue Engineering. Medical Clinics of North America. 2007, vol. 91, no. 5, p. 889–898. https://linkinghub.elsevier.com/retrieve/pii/S0025712507000636.
    DOI:10.1016/j.mcna.2007.05.001
  • 小澤岳昌. 光プローブの新しいデザインと生体機能の可視化. 化学工業. 2007, vol. 58, p. 860–864.
  • 小澤岳昌. “バイオテクノロジーにおける生物発光”. バイオ・ケミルミネセンスハンドブック. 今井一洋, 近江谷克裕編. 丸善株式会社, 2006.
  • Takeuchi, Masaki, Ozawa, Takeaki. Frontiers in Bioimaging. ACS Chemical Biology. 2006, vol. 1, no. 6, p. 333–334. https://pubs.acs.org/doi/10.1021/cb600266h.
    DOI:10.1021/cb600266h
  • 小澤岳昌, 梅澤喜夫. 新しい蛍光タンパク質とその応用. ゲノム医学. 2006, vol. 6, p. 277–280.
  • 小澤岳昌. フローサイトメーター. ぶんせき. 2006, vol. 384, p. 640–641.
  • 小澤岳昌. タンパク質の局在を知るープロテインスプライシングを利用したイメージング技術の開発. バイオニクス. 2006, vol. 3, p. 52–57.
  • 小澤岳昌. スプリットルシフェラーゼを用いた細胞内シグナル解析法. バイオテクノロジージャーナル. 2006, vol. 6, p. 225–228.
  • OZAWA, Takeaki. Proteins for Visualizing Intracellular Signaling (細胞内情報を視覚化するタンパク質試薬). Kobunshi. 2006, vol. 55, no. 5, p. 343–343. http://joi.jlc.jst.go.jp/JST.Journalarchive/kobunshi1952/55.343?from=CrossRef.
    DOI:10.1295/kobunshi.55.343
  • 小澤岳昌. マウス個体におけるタンパク質動態イメージング. 細胞工学. 2006, vol. 25, p. 1019–1022.
  • 小澤岳昌. “ミトコンドリア局在タンパク質を同定するプローブ分子”. 化学測定の辞典. 梅澤喜夫編. 朝倉書店, 2005.
  • “Inteins for Split-Protein Reconstitutions and Their Applications”. Nucleic Acids and Molecular Biology, Vol. 16. Ozawa, T., Umezawa, Y., Belfort, M.編. Springer-Verlag/Berlin, 2005, p. 307–323.
  • Umezawa, Y., Ozawa, T., Sato, M., Inadera, H., Kaneko, S., Kunimoto, M., Hashimoto, S. Methods of analysis for chemicals that disrupt cellular signaling pathways: risk assessment for potential endocrine disruptors. Enviromental Sciences. 2005, vol. 12, p. 49–64.PubMed:15793560
  • 小澤岳昌. “Reporter gene assay”. 先端の分析法—理工学からナノ・バイオまで. 梅澤喜夫, 澤田嗣郎, 寺部茂編. エヌ・ティー・エス, 2004.
  • 小澤岳昌. “細胞内オルガネラ局在タンパク質同定法”. 先端の分析法—理工学からナノ・バイオまで. 梅澤喜夫, 澤田嗣郎, 寺部茂編. エヌ・ティー・エス, 2004.
  • 小澤岳昌. “Western blotting”. 先端の分析法—理工学からナノ・バイオまで. 梅澤喜夫, 澤田嗣郎, 寺部茂編. エヌ・ティー・エス, 2004.
  • 小澤岳昌. 高等動物にも存在したプロテインスプライシング. 化学. 2004, no. 9, p. 61–62.
  • 小澤岳昌. “FACS”. 先端の分析法—理工学からナノ・バイオまで. 梅澤喜夫, 澤田嗣郎, 寺部茂編. エヌ・ティー・エス, 2004.
  • 小澤岳昌. “カット&ペースト”で機能性タンパク質をつくるープロテインスプライシングに学ぶ合成技術—. 現代科学. 2004, no. 5, p. 49–54.
  • 小澤岳昌. “酵母two-hybrid法(in vivo)ほか”. 先端の分析法—理工学からナノ・バイオまで. 梅澤喜夫, 澤田嗣郎, 寺部茂編. エヌ・ティー・エス, 2004.
  • 小澤岳昌. 蛍光・発光タンパク質プローブの新たなデザインと細胞内オルガネラを標的としたプロテオミクス. ぶんせき. 2004, vol. 359, p. 637–639.
  • 小澤岳昌, 梅澤喜夫. タンパク質間相互作用の生体での非破壊イメージング. 実験医学. 2004, vol. 22, p. 529–533.
  • 佐藤守俊,小澤岳昌,梅澤喜夫. タンパク質プローブ. 現代科学. 2003, no. 2, p. 25–31.
  • 梅澤喜夫, 佐藤守俊, 小澤岳昌. 生細胞内情報伝達の蛍光可視化プローブ. ぶんせき. 2003, vol. 337, p. 18–25.
  • 小澤岳昌. 環境—環境汚染物質のリスク評価・高速スクリーニング法—. ぶんせき. 2003, vol. 346, p. 592–596.
  • 小澤岳昌. インテイン. Molecular Medicine. 2003, vol. 40, p. 1384–1386.
  • Ozawa, Takeaki, Sako, Yusuke, Sato, Moritoshi, Kitamura, Toshio, Umezawa, Yoshio. A genetic approach to identifying organelle-localized proteins. Proc. ISBC 2003. 2003, p. 276–279.
  • 小澤岳昌. “表面プラズモン共鳴法”. 機器分析実験. 梅澤喜夫, 本水昌二, 渡会仁, 寺前紀夫編. 東京化学同人, 2002.
  • 小澤岳昌. “共焦点レーザー走査型蛍光顕微鏡”. 機器分析実験. 梅澤喜夫, 本水昌二, 渡会仁, 寺前紀夫編. 東京化学同人, 2002.
  • Umezawa, Yoshio, Ozawa, Takeaki, Sato, Moritoshi. Methods of Analysis for Chemicals that Promote/Disrupt Cellular Signaling. Analytical Sciences. 2002, vol. 18, no. 5, p. 503–516. http://joi.jlc.jst.go.jp/JST.JSTAGE/analsci/18.503?from=CrossRef.
    DOI:10.2116/analsci.18.503
  • Umezawa, Yoshio, Ozawa, Takeaki, Sato, Moritoshi. Probing Chemical Processes in Living Cells: Applications for Assay and Screening of Chemicals that Disrupt Cellular Signaling Pathways. Bulletin of the Chemical Society of Japan. 2002, vol. 75, no. 7, p. 1423–1433. http://www.journal.csj.jp/doi/10.1246/bcsj.75.1423.
    DOI:10.1246/bcsj.75.1423
  • Umezawa, Y., Ozawa, T., Sato, M. Assay and Screening Methods for Chemicals that Disrupt Cellular Signaling Pathways. Risk Assessment for Potential Endocrine Disruptors. Environmental Sciences. 2002, vol. 9, p. 23–35.
  • Ozawa, Takeaki, Umezawa, Yoshio. Peptide Assemblies in Living Cells. Methods for Detecting Protein-Protein Interactions†. Supramolecular Chemistry. 2002, vol. 14, no. 2–3, p. 271–280. https://www.tandfonline.com/doi/full/10.1080/10610270290026185.
    DOI:10.1080/10610270290026185
  • 小澤岳昌. “共焦点レーザ走査型蛍光顕微鏡”. 界面ハンドブック. 岩澤康裕, 梅澤喜夫, 澤田嗣郎, 辻井薫編. エヌ・ティー・エス, 2001.
  • 小澤岳昌. “固定化ペプチド”. 界面ハンドブック. 岩澤康裕, 梅澤喜夫, 澤田嗣郎, 辻井薫編. エヌ・ティー・エス, 2001.
  • Ozawa, Takeaki, Umezawa, Yoshio. Detection of protein–protein interactions in vivo based on protein splicing. Current Opinion in Chemical Biology. 2001, vol. 5, no. 5, p. 578–583. https://linkinghub.elsevier.com/retrieve/pii/S1367593100002441.
    DOI:10.1016/S1367-5931(00)00244-1
  • 小澤岳昌, 梅澤喜夫. 内分泌撹乱化学物質の細胞内標的分子の同定と新しいバイオモニタリング.(特集:内分泌撹乱化学物質(環境ホルモン)とその問題点). 産婦人科の実際. 2000, vol. 49, p. 1113–1122.
  • 小澤岳昌, 梅澤喜夫. “膜レセプタセンサ”. 最新の分離・精製・検出法〜原理から応用まで. 梅澤喜夫, 澤田嗣郎, 中村洋編. エヌ・ティー・エス, 1997.
  • 平野愛弓, 小澤岳昌, 菅原正雄, 梅澤喜夫(分担執筆). “信号伝達のバイオセンサー”. 生物のスーパーセンサー. 生物物理学会編. 共立出版, 1997, p. 172–181.
  • Sugawara, M., Sato, H., Ozawa, T., Umezawa. “Receptor Based Chemical Sensing”. Frontiers in Biosensorics, I, Fundamental Aspects. Y., Sheller, F. W., Schubert, F., Fedrowitz, J.編. Birkhäuser Verlag Basel/Switzerland, 1997, p. 121–131.
  • 菅原正雄, 小澤岳昌, 平野愛弓, 中西淳, 佐藤守俊, 梅澤喜夫. レセプター蛋白に基づく化学センシング −生理適合性を有するアゴニスト選択性の評価法−. 表面. 1997, vol. 35, p. 660–668.